Computing PI and Hyper–Wiener Indices of Corona Product of some Graphs

Authors

  • H. YOUSEFI–AZARI University of Tehran, Islamic Republic of Iran
  • M. TAVAKOLI University of Tehran, Islamic Republic of Iran
Abstract:

Let G and H be two graphs. The corona product G o H is obtained by taking one copy of G and |V(G)| copies of H; and by joining each vertex of the i-th copy of H to the i-th vertex of G, i = 1, 2, …, |V(G)|. In this paper, we compute PI and hyper–Wiener indices of the corona product of graphs.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

computing pi and hyper–wiener indices of corona product of some graphs

let g and h be two graphs. the corona product g o h is obtained by taking one copy of gand |v(g)| copies of h; and by joining each vertex of the i-th copy of h to the i-th vertex of g,i = 1, 2, …, |v(g)|. in this paper, we compute pi and hyper–wiener indices of the coronaproduct of graphs.

full text

computing some topological indices of tensor product of graphs

a topological index of a molecular graph g is a numeric quantity related to g which isinvariant under symmetry properties of g. in this paper we obtain the randić, geometricarithmetic,first and second zagreb indices , first and second zagreb coindices of tensorproduct of two graphs and then the harary, schultz and modified schultz indices of tensorproduct of a graph g with complete graph of ord...

full text

Total vertex irregularity strength of corona product of some graphs

A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...

full text

total vertex irregularity strength of corona product of some graphs

a vertex irregular total k-labeling of a graph g with vertex set v and edge set e is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. the total vertex irregularity strength of g, denoted by tvs(g)is the minimum value of the largest label k over all such irregular assignment. in this paper, we study the to...

full text

studying the corona product of graphs under some graph invariants

the corona product $gcirc h$ of two graphs $g$ and $h$ isobtained by taking one copy of $g$ and $|v(g)|$ copies of $h$;and by joining each vertex of the $i$-th copy of $h$ to the$i$-th vertex of $g$, where $1 leq i leq |v(g)|$. in thispaper, exact formulas for the eccentric distance sum and the edgerevised szeged indices of the corona product of graphs arepresented. we also study the conditions...

full text

Vertex and edge PI indices of Cartesian product graphs

The Padmakar-Ivan (PI) index of a graph G is the sum over all edges uv of G of the number of edges which are not equidistant from u and v. In this paper, the notion of vertex PI index of a graph is introduced. We apply this notion to compute an exact expression for the PI index of Cartesian product of graphs. This extends a result by Klavzar [On the PI index: PI-partitions and Cartesian product...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue Issue 1 (Special Issue on the Role of PI Index in Nanotechnology)

pages  131- 135

publication date 2010-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023